Fibromyalgia
Fibromyalgia
Last Section Update: 03/2012
Contributor(s): Shayna Sandhaus, PhD
1 Overview
Summary and Quick Facts for Fibromyalgia
- Typically present in young or middle-aged women, fibromyalgia is a condition of soft tissue pain, muscular stiffness, unremitting fatigue, disturbed sleep and cognitive slowing that is often associated with a variety of additional unexplained symptoms, psychological depression and impairment of activities of daily living.
- This protocol will summarize several potential triggers of fibromyalgia symptoms and outline steps that can be taken to identify and address them. Using convenient blood tests to uncover potential imbalances or deficiencies and targeting them with scientifically studied natural therapies may improve the quality of life for those with fibromyalgia.
- Most experts in the field of fibromyalgia recommend a multifaceted, tailored treatment program incorporating both pharmacologic and nonpharmacologic therapy (e.g., education, physical therapy and cognitive behavioral therapy). An appropriate fibromyalgia management program should be aimed at symptomatic treatment of pain, fatigue and sleep quality, as well as improving physical capacity and emotional balance.
What is Fibromyalgia?
Fibromyalgia is a neurosensory disorder once considered by mainstream medicine as purely psychosomatic. The disorder is characterized by disturbances in the way the central nervous system (CNS) interprets and evaluates stimuli; the CNS may interpret innocuous stimuli as painful and may overly respond to pain.
While the cause(s) of fibromyalgia remains unknown, it has been linked with disorders of inflammation and possibly mitochondrial dysfunction, as well as hormonal and neurotransmitter imbalance.
Natural interventions such as magnesium and melatonin may help reduce symptoms of fibromyalgia and improve quality of life.
What are Risk Factors for Fibromyalgia?
- Young or middle-aged female
- Sleep dysfunction
- Obesity
What are the Signs and Symptoms of Fibromyalgia?
- Widespread chronic pain; can be tingling, crawling, burning, throbbing, etc.
- Chronic fatigue
- Sleep disturbances
- Mood disturbances (eg, anxiety or depression)
- Cognitive difficulties (eg, trouble concentrating or remembering details)
- Migraine and tension headaches
- Other symptoms can include irritable bowel, urinary problems, weight fluctuations, and sexual dysfunction
Note: Individuals with fibromyalgia can be affected differently; the common symptom is chronic pain.
What are Conventional Medical Treatments for Fibromyalgia?
Note: Fibromyalgia treatment is generally multi-faceted, incorporating pharmacologic and non-pharmacologic therapies for best results.
- Pain relievers (eg, opioids, nonopioid analgesics, local anesthetics)
- Sleep aids
- Anti-inflammatories (eg, nonsteroidal anti-inflammatory drugs [NSAIDs])
- Antidepressants
- Botulinum toxin (Botox)
- Muscle relaxants
- Anticonvulsants
- Education concerning the diagnosis and treatment of fibromyalgia
- Cognitive-behavioral therapy
What Dietary and Lifestyle Changes May Be Beneficial for Fibromyalgia?
- Exercise regularly
- Quit smoking
- Reduce alcohol consumption
- Eat a healthy, well-balanced, antioxidant-rich diet
- Yoga and meditation
What Natural Interventions May Be Beneficial for Fibromyalgia?
- Magnesium. Low magnesium levels may be associated with the development and severity of fibromyalgia. Supplementation has been shown to improve symptoms.
- Melatonin. Fibromyalgia patients often have low levels of melatonin and secrete less at night than healthy individuals. For these people, melatonin supplementation has been shown to improve symptoms.
- S-adenosyl-L-methionine (SAMe). SAMe supplementation is linked to improvements in morning stiffness, fatigue, quality of sleep, and clinical disease activity among fibromyalgia patients. SAMe may also provide relief from depression.
- D-ribose. Supplementation with this sugar has been shown to improve energy, sleep, mental clarity, pain intensity, and general well-being in fibromyalgia patients. Another trial showed that it improved exercise capacity, vitality, and mental outlook.
- Chlorella. Chlorella is a genus of algae that contains vitamins, minerals, dietary fiber, nucleic acids, amino acids, and other important substances. Chlorella has been shown to relieve symptoms of fibromyalgia when used as a supplement.
- 5-hydroxytryptophan (5-HTP). 5-HTP is an endogenous precursor to serotonin. Supplementation in fibromyalgia patients has been shown to improve anxiety, pain intensity, quality of sleep, fatigue, and tender point count.
- Coenzyme Q10 (CoQ10). Low levels of CoQ10 are associated with fibromyalgia symptoms, and supplementation was shown in a small trial to significantly improve symptoms.
- Acetyl-L-carnitine. Carnitine deficits may play a role in fibromyalgia; in one study, oral and intramuscular injections of acetyl-L-carnitine significantly improved pain and cognitive symptoms.
- Omega-3 fatty acids. Omega-3 fatty acids have been shown to reduce inflammation. Supplementation is linked to improvements in pain severity, tender point counts, fatigue, and depression among patients with fibromyalgia.
- Vitamin D. Vitamin D deficiency is frequently observed in patients with fibromyalgia. A clinical trial found that increasing vitamin D levels to ≥ 30 ng/mL significantly improved symptoms in many fibromyalgia patients; the improvement became more significant when levels exceeded 50 ng/mL.
- Other natural interventions that may provide benefits for people with fibromyalgia include superoxide dismutase (SOD), vitamins A, C, and E, zinc, B vitamins, and nicotinamide adenine dinucleotide (NADH).
2 Introduction
Typically presenting in young or middle-aged women, fibromyalgia is a condition of soft tissue pain, muscular stiffness, unremitting fatigue, disturbed sleep, and cognitive “slowing”, often associated with a variety of additional unexplained symptoms, psychological depression, and impairment of activities of daily living.
Of note, fibromyalgia was once often dismissed by the mainstream medical community as a psychological disorder without underlying medical causation because of the lack of objective medical findings on screening laboratory tests and medical imaging procedures. However, recent research has helped identify the underlying nervous system pathology for fibromyalgia, which is currently believed to be a central sensitivity syndrome (Burgmer 2009; Yunus 2007).
Fibromyalgia is currently identified as a neurosensory disorder characterized by disturbances in the way the central nervous system interprets and evaluates stimuli (Gracely 2002).
Fibromyalgia typically is associated with other regional pain syndromes, as well as mood and anxiety disorders. In fact, significant data support the idea that fibromyalgia, chronic fatigue syndrome, regional chronic pain syndromes, and some emotional disorders all involve abnormal perturbations of the stress response system (Buskila 2006; Diatchenko 2006). In these disorders, stress functions to cause alterations in corticotropin-releasing hormone, with associated effects on the neuroendocrine axis.
In addition, fibromyalgia often is observed in other co-morbid disease characterized by chronic, systemic inflammation, such as rheumatoid arthritis, systemic lupus erythematosus, and chronic hepatitis C infection (Buskila 2003; Thompson 2003; Wolfe 1984). In such cases, associated disorders of systemic inflammation, chronic stress, anxiety and depression, hormone imbalances, and impaired sleep must be treated for optimum outcome in fibromyalgia.
This protocol will summarize several potential triggers of fibromyalgia symptoms as well as outline steps that can be taken to identify and address them. Using convenient blood tests to uncover potential imbalances or deficiencies and targeting them with scientifically studied natural therapies may improve the quality of life for those with fibromyalgia.
3 Symptoms of Fibromyalgia
The primary symptom of fibromyalgia is widespread chronic pain that persists for at least three months and may be accentuated at tender points. This is often accompanied by chronic fatigue and frequent sleep disturbances (Mease 2008). In addition to this triad of symptoms, other common indicators of fibromyalgia include tenderness, stiffness, mood disturbances (e.g., depression and/or anxiety), and cognitive difficulties (e.g., trouble concentrating, forgetfulness, and disorganized thinking) (Arnold 2011). Migraine and tension headaches are also present in more than half of individuals with fibromyalgia (Marcus 2005). Many of those suffering from this chronic condition experience a variety of other unexplained symptoms such as (Nordqvist 2012; Goldenberg 2004; Rico-Villademoros 2012):
- Irritable bowel sensations
- Headache
- Pelvic and urinary problems
- Weight fluctuations
- Sexual dysfunction
- Cognitive dysfunction
Although these symptoms often come and go spontaneously, they are usually intense enough to impair daily function (Arnold 2008).
Since each individual diagnosed with fibromyalgia is affected differently, their experience(s) will vary. For example, fibromyalgia pain has been described as deep muscular aching, soreness, stiffness, burning, or throbbing. People with fibromyalgia may also experience numbness, tingling, or strange "crawling" sensations in their arms and legs (Goldenberg 2011).These painful sensations are typically described as “widespread” – meaning they originate above and below the waist, on both sides of the body, as well as in the spine and lower back (Wolfe 2010).
4 Possible Causes of Fibromyalgia
Because many fibromyalgia patients appear well upon physical examination, the diagnosis of fibromyalgia was historically considered controversial and, unfortunately, written off by many conventional physicians as a psychosomatic condition (Goldenberg 2011; Goldenberg 1999).
Insulin Resistance
Despite years of research, the etiology of fibromyalgia has remained incompletely understood. Consequently, consistently effective therapies are not available. But there may now be some hope: an article published in May 2019 provided compelling support for the hypothesis that insulin resistance may cause fibromyalgia (Pappolla 2019).
Insulin resistance has been shown to cause dysfunction of brain blood vessels, leading to cerebral hypoperfusion (inadequate blood supply) (Frosch 2017). Similar abnormalities have been observed in patients with fibromyalgia (Mountz 1995). This similarity was the basis for the recent study. To test their theory, researchers compared levels of glycated hemoglobin A1c (HbA1c—a biomarker of insulin resistance) (Goldstein 2003) in fibromyalgia patients with levels in age-matched healthy controls. The age-matching is important, as what is considered “normal” for HbA1c levels changes with age (Pani 2008). They found that compared with healthy subjects in the same age group, patients with fibromyalgia had much higher HbA1c levels.
The most intriguing part of the study is how fibromyalgia patients responded to treatment with the insulin-sensitizing drug metformin: all 16 patients treated with metformin saw a dramatic reduction in pain. Half of the patients even experienced complete resolution of pain, a degree of improvement never before accomplished in people with fibromyalgia. The fact that there were no non-responders could indicate that this is a disease-modifying therapy.
Further studies are necessary to explore the relationship between insulin resistance and fibromyalgia. This finding, if confirmed by future studies, could lead to a “radical paradigm shift” in the management of fibromyalgia.
More strategies to overcoming insulin resistance are detailed in Life Extension’s Diabetes and Glucose Control protocol.
Pain Hypersensitivity
Evidence from functional magnetic resonance imaging (fMRI) studies of the brain has demonstrated that patients with fibromyalgia are more sensitive to pain than their healthy counterparts (Gracely 2002). Therefore, fibromyalgia is thought to be a result of some type of neurosensory disorder that perturbs the central nervous system’s ability to process painful stimuli (Dadabhoy 2008; Braz 2011).This dysfunction appears to be a result of neurochemical imbalances that cause the brain to amplify pain through two different mechanisms: (1) allodynia (i.e., a heightened sensitivity to stimuli that are not normally painful); and (2) hyperalgesia (an increased response to painful stimuli) (Clauw 2011). Although no one knows exactly how or why this central sensitization develops, researchers have identified several possible theories.
Hormonal Influences and Stress
Although a causal link has yet to be established, some evidence suggests a role for sex hormones in the etiology of fibromyalgia. For example, fibromyalgia predominantly affects middle aged women; a population whose hormones have begun to decline or fall out of youthful balance (Lawrence 2008; Terhorst 2011). Furthermore, the fluctuating hormone levels caused by endocrine dysfunction commonly produce symptoms that are similar to those of fibromyalgia (e.g., muscle pain/tenderness, exhaustion, and reduced exercise capacity) (Geenen 2002). In one clinical trial, taking the selective estrogen receptor modulator (SERM) raloxifene every other day for 16 weeks led to significant improvements in pain and fatigue scores; reduced tender points and sleep disturbances; and greater recovery of usual activities compared to placebo among 49 women (Sadreddini 2008). These findings implicate estrogen signaling in fibromyalgia etiology.
Likewise, perturbations in the hypothalamic-pituitary-adrenal (HPA) axis have been demonstrated in fibromyalgia patients, indicating a possible therapeutic role for dehydroepiandrosterone (DHEA) supplementation and stress management strategies (Sarac 2006). It is thought that stress functions to cause alterations in corticotropin-releasing hormone (CRH), with associated effects on the neuroendocrine axis. More information is available in the Stress Management protocol.
This evidence is consistent with recent data indicating a relatively high prevalence of growth hormone deficiency among patients with severe fibromyalgia. This deficiency is linked to increased levels of blood cytokines and pain severity (Cuatrecasas 2010; Terry 2012).Therefore, fibromyalgia patients may benefit from hormone level testing in order to identify, and subsequently treat any underlying imbalances or insufficiencies (Cuatrecasas 2010). In the case of growth hormone (GH)-deficient fibromyalgia patients, GH replacement therapy has been associated with significant improvements in symptoms and quality of life (Cuatrecasas 2009).
For more information on hormone testing and natural hormone replacement, refer to the Female Hormone Restoration Therapy protocol.
Neurotransmitter Imbalances
Symptoms of fibromyalgia might be caused by a disruption in the communication between peripheral nerves and the brain. This theory is supported by evidence indicating that fibromyalgia patients often have lower-than-normal amounts of neurotransmitters (i.e., serotonin, norepinephrine, and dopamine) (Becker 2012) and frequently suffer from mood disorders like depression and anxiety. A low level of serotonin is particularly significant to fibromyalgia patients as an imbalance can contribute to pain sensitivity, sleep disturbances, and mood alterations. This supports the use of antidepressants for treating fibromyalgia, since antidepressants often increase the circulating amounts of these important neurotransmitters. The problem with antidepressants is that they often come with undesirable side effects, and thus are not a very attractive option for many patients. Fortunately, supplementation with a natural building block of serotonin called 5-HTP (5-Hydroxytryptophan) may improve the fibromyalgia symptoms of pain, depression, anxiety, and insomnia (Birdsall 1998). 5-HTP supplementation is well tolerated, and generally starts to take effect within the first 30 days of use (Sarac 2006).
Inflammation
Although fibromyalgia is not generally believed to be an inflammatory condition (Goldenberg 2011), there is evidence suggesting that some type of inflammatory process may be contributing to its onset and/or progression (Kadetoff 2012). While classic inflammatory processes are not observed in fibromyalgia patients, these individuals do exhibit some inflammation-related abnormalities (Lucas 2006). For instance, the cerebro-spinal fluid (CSF) of fibromyalgia patients commonly contains higher-than-normal levels of the inflammatory mediators substance P and corticotropin releasing hormone (CRH). Likewise, the serum of fibromyalgia patients commonly contains higher-than-normal levels of the pro-inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and substance P, while the skin of fibromyalgia patients commonly contains higher-than-normal amounts of mast cells, which can produce IL-6 and IL-8.
In addition, fibromyalgia often occurs simultaneously with other chronic inflammatory conditions, such as arthritis, systemic lupus erythematosus, or chronic hepatitis C infection (Buskila 2003; Thompson 2003; Wolfe 1984). It is possible that inflammation arising from co-occurring medical conditions could play a role in the pathology of fibromyalgia. Therefore, some individuals with fibromyalgia, especially those who have been diagnosed with other medical conditions, may respond to supplementation with natural anti-inflammatory agents such as omega-3 fatty acids, curcumin and boswellia serrata (Calder 2010; Basnet 2011; Sengupta 2011).
Sleep Dysfunction
Although sleep disturbance is an obvious consequence/symptom of fibromyalgia, some researchers believe that non-restorative sleep (NRS) may actually cause and/or contribute to fibromyalgia-related pain (Moldofsky 2010). This bi-directional relationship is further supported by studies of fibromyalgia patients showing that improvement in sleep quality is linked to significant reductions in fibromyalgia symptom intensity (Prados 2012). Since serotonin is involved in pain signaling and sleep regulation, some researchers have suggested that abnormally low serotonin levels (common among fibromyalgia patients) may be one possible explanation for this connection (Arnold 2010). Clinical studies have also found that fibromyalgia patients may have low circulating levels of melatonin, which can lead to disruptions in sleep cycles (Hussain 2011). Among these patients, melatonin supplementation has been shown to improve sleep and fatigue-related symptoms (Reiter 2007).
As with pain, fibromyalgia-related sleep dysfunction should be managed in a step-wise fashion, starting with the least risky treatment. For many of those with fibromyalgia, improving sleep hygiene is enough to make a significant difference (Spaeth 2011). The sleep environment should be dark, cool, and quiet, and external distractions should be minimized. The sleep cycle should be normal (e.g., consistent bedtime and morning awakening time), and healthy lifestyle considerations (e.g., adequate exercise, smoking cessation, and avoiding nighttime alcohol use) may also help improve sleep quality (Leger 2010).
Patients who continue to have problems sleeping may require pharmacotherapy with agents such as zolpidem (Ambien®) and eszopiclone (Lunesta®). However, these medications can be habit forming and are not associated with subsequent pain relief (Spaeth 2011). On the other hand, natural supplements such as 5-HTP and melatonin are not only associated with improvements in sleep quality and pain score, but are also less likely to produce negative side effects (Reiter 2007; Sarac 2006).
Mitochondrial Dysfunction
Mitochondria are cellular components responsible for the generation of the energy necessary for proper cellular function. Evidence indicates that fibromyalgia symptoms may arise as a result of mitochondrial dysfunction (Gardner 2011; Pieczenik 2007; Le Goff 2006). For example, case reports of two patients with fibromyalgia revealed impaired mitochondrial function and deficiency in coenzyme Q10 (a critical compound necessary for proper mitochondrial function) in blood and skin cells (Cordero 2010a). Similarly, in another case report, a 41-year-old woman diagnosed with fibromyalgia, but who had been unresponsive to a variety of conventional treatments, was later found to have significant mitochondrial dysfunction (Abdullah 2012). Her symptoms improved dramatically when treated four times daily with a cocktail of mitochondrial nutrients including coenzyme Q10 (200 mg), creatine (1,000 mg), L-carnitine (200 mg) and folic acid (1,000 mcg). Moreover, dysfunctional mitochondria contribute to increased oxidative stress. In a study involving 20 fibromyalgia patients and 10 healthy controls, the fibromyalgia patients had greater levels of a mitochondria-derived free radical (superoxide) in their blood cells and increased lipid peroxidation compared to the healthy subjects (Cordero 2010b).
5 Diagnosing Fibromyalgia
Most doctors diagnose fibromyalgia on the basis of widespread pain lasting three months or more that is not attributable to any other medical condition. However, in-depth criteria for the diagnosis of fibromyalgia have been developed by the American College of Rheumatology (ACR) (Wolfe 2010), but many physicians don’t strictly adhere to these criteria.
Doctors have trouble diagnosing fibromyalgia for a variety of reasons. First, fibromyalgia patients typically do not exhibit any obvious abnormalities upon physical examination, laboratory analysis, and/or radiologic imagining. Also, fibromyalgia patients are often affected by at least one of the following disorders: chronic fatigue syndrome (CFS), irritable bowel syndrome (IBS), interstitial cystitis (IC), and temporomandibular disorder (TMD) (Aaron 2000).
Therefore, distinguishing the symptoms associated with fibromyalgia from the aforementioned conditions can be fairly confusing, even for experienced physicians (Henningsen 2007). For these reasons, fibromyalgia is primarily a diagnosis of exclusion, which means that other diseases and disorders must first be ruled out.
6 Conventional Treatment
Most experts in the field of fibromyalgia recommend a multi-faceted, tailored treatment program incorporating both pharmacologic and non-pharmacologic therapy (i.e., education, physical therapy, and cognitive behavioral therapy) (Tits 2011; Goldenberg 2004). Since the experience of fibromyalgia and the reaction to therapy is largely shaped by a complex interaction of physical, psychological, and social factors, most experts suggest a multidisciplinary approach, which involves a team of clinicians from a variety of medical disciplines (e.g., family practice, physical therapist, and mental health specialists) (Carville 2008; Hassett 2009). An appropriate fibromyalgia management program should be aimed at symptomatic treatment of pain, fatigue, and sleep quality, as well as improving physical capacity and emotional balance (de Miquel 2010).
Conventional Pharmacologic Therapy
Traditional pharmacotherapy for fibromyalgia includes the wide variety of medications listed below (Traynor 2011):
- Pain relievers (e.g., opioids; nonopioid analgesics; local anesthetics)
- Sleep Aids
- Anti-inflammatories (e.g., nonsteroidal anti-inflammatory drugs (NSAIDs))
- Antidepressants
- Botulinum toxin (Botox®)
- Muscle relaxants
- Anticonvulsants
While all the above medications are commonly used to treat fibromyalgia, the FDA has only approved 3 specific drugs for this indication. In June 2007, pregabalin (Lyrica®), an anticonvulsant drug, became the first to be approved. A year later duloxetine (Cymbalta®), an antidepressant, became the second. The most recent addition to this list is the antidepressant milnacipran (Savella®), which was FDA approved in January 2009.
Unfortunately, none of these medications are effective for the entire scope of symptoms and disabilities associated with fibromyalgia (Argoff 2002). Furthermore, many patients either fail to respond or develop significant side effects to these drugs, especially since they are required to be on them long-term (Braz 2011).
Pharmacotherapy is typically initiated only after less invasive strategies have failed. Since fibromyalgia patients often present with dissimilar symptoms and different symptom severities, there is no universally applicable drug treatment algorithm available. Therefore, physicians generally direct treatment at the most bothersome symptoms, organize potential therapies by mechanism of action, and start with drugs that carry the lowest side effect profile (Traynor 2011).
Conventional Non-Pharmacologic Therapy
Education concerning the diagnosis and treatment of fibromyalgia is not only effective, but also one of the cheapest and least invasive interventions (Luciano 2011). Educational interventions are particularly beneficial for fibromyalgia patients that have lived with the syndrome for many years, all the while believing that the symptoms were completely psychological (Goldenberg 2004). This not only leaves individuals with fibromyalgia feeling rejected by the medical community, but also induces significant stress, potentially worsening symptoms. Therefore, becoming informed about the disorder can not only ease the fear of the unknown, but produce a significant therapeutic effect as well (Pfeiffer 2003).
Cognitive behavioral therapy (CBT) and relaxation techniques have been shown to reduce pain and improve sleep (Glombiewski 2010). Lifestyle modifications such as exercising regularly, eliminating tobacco use, and reducing excess alcohol consumption should also be considered, as they are strongly associated with decreased pain and fatigue. Although regular aerobic fitness and strength training are significantly beneficial interventions, numerous patients are unwilling or unable to adhere to these regimens (due to pain) (Crofford 2001).
7 Dietary Considerations and Alternative Physical Modalities
Diet
Given the known association between obesity and fibromyalgia, it is not surprising that adherence to a healthy diet can have significant benefits. According to recent evidence, vegetarian diets are particularly beneficial for decreasing the pain associated with fibromyalgia; not only because they can induce weight loss, but also because they are rich in antioxidants (Arranz 2010). This is recommended based on evidence that oxidative damage (i.e., free radicals) plays an important role in the development of fibromyalgia (Altindag 2006; Bagis 2005). However, adherence to a specific dietary pattern may not be necessary if antioxidant-rich foods are consumed regularly as part of a healthy diet (Sendur 2009; USDA 2007).
Complementary and Alternative Physical Modalities
In the case of acupuncture, some data suggests it produces short-term pain relief, but these benefits do not appear to be long-term (Terry 2012). Other promising alternative interventions include movement-based therapies such as yoga, Tai-chi, mindfulness meditation, and hydrotherapy (in which the patient undergoes physical therapy while in the water or simply bathes to relieve symptoms) (Terhorst 2011; Carson 2010; Schmidt 2011; Wang 2010).
8 Nutrients
Although no individual dietary supplement has been proven to be effective for relieving all the common symptoms of fibromyalgia,the following have either been linked to symptom improvements or recommended by experts to overcome deficits that are common among fibromyalgia patients:
Magnesium - Research has revealed that low circulating levels of magnesium may be implicated in the development of fibromyalgia in some individuals (Sendur 2008; Bagis 2012). Magnesium supplementation has been shown to reduce symptoms of fibromyalgia, thus making it a frequently recommended supplement (Holdcraft 2003; Arranz 2011).
In one clinical trial involving 80 women (60 with fibromyalgia and 20 healthy controls), a diagnosis of fibromyalgia was associated with significantly lower red blood cell and serum magnesium levels. Furthermore, lower magnesium levels were associated with more severe fibromyalgia symptoms (Bagis 2012). The trial went on to assess the effect of 8 weeks of supplementation with magnesium citrate (300 mg/d) alone or in combination with amitriptyline (10 mg/d) upon several measures of fibromyalgia severity. While both magnesium and amitriptyline alone effectively improved many of the assessed parameters, the combination of the two was more effective than either alone and significantly improved pain, tender points, depression and anxiety scores, as well as sleep disorders and irritability.
Patients with fibromyalgia should consider having a red blood cell magnesium test to ensure that they are not deficient in this important nutrient.
Melatonin – Melatonin is a hormone that helps regulate the sleep-wake cycle. Clinical studies have found that some fibromyalgia patients often have low circulating levels of melatonin, which can lead to disruptions in the sleep cycle (Hussain 2011). In addition, fibromyalgia patients appear to secrete less melatonin during the night than healthy controls (Mahdi 2011). Among these patients, melatonin supplementation has been shown to decrease symptoms of fibromyalgia (Reiter 2007; Hussain 201).
S-adenosyl-L-methionine (SAMe) – SAMe is a natural compound made from methionine (an amino acid) and adenosine triphosphate (ATP). Supplementation with SAMe has been linked to improvements in morning stiffness, fatigue, quality of sleep, and clinical disease activity among fibromyalgia patients (Jacobsen 1991). In addition, other studies have shown that SAMe provides relief from depression, which sometimes occurs in people with fibromyalgia (Albert 2004; Alok 2011).
D-ribose – D-ribose is a sugar that helps increase cellular energy synthesis in muscle cells. One trial involving 41 fibromyalgia patients found that 5 grams of D-ribose three times daily significantly improved energy, sleep, mental clarity, pain intensity, and general well-being (Teitelbaum 2006). Another small trial found that 3 grams of D-ribose twice daily improved exercise capacity, vitality, and mental outlook in adults 50 and older (Flanigan 2010). Similarly, a case-report of a 37 year-old woman with fibromyalgia indicated that 5 grams of D-ribose twice daily improved her symptoms (Gebhart 2004).
Chlorella – Chlorella is a genus of single-cell green algae. It grows in fresh water and contains high concentrations of important vitamins, minerals, dietary fiber, nucleic acids, amino acids, enzymes, and other substances. Chlorella has been shown to relieve symptoms of fibromyalgia when used as a supplement (Sarac 2006). In a small pilot trial, 18 patients with fibromyalgia experienced an average 22% decrease in pain intensity after taking chlorella daily for two months (Merchant 2000).
5-Hydroxytryptophan (5-HTP) – 5-HTP is an endogenous precursor to serotonin. It can be derived from the seeds of an African plant (Griffonia simplificolia). The potential utility of 5-HTP - a more direct precursor to serotonin than L-tryptophan - in fibromyalgia is supported by data indicating impaired tryptophan metabolism in fibromyalgia patients (Schwarz 2002). Clinical trials have shown that 5-HTP supplementation in fibromyalgia patients is associated with considerable improvements in anxiety, pain intensity, quality of sleep, fatigue, and the number of tender points (Caruso 1990; Sarzi Puttini 1992).
Coenzyme Q10 (CoQ10) – CoQ10 is an essential component of healthy mitochondrial function, as well as a powerful antioxidant (Littarru 2007). CoQ10 has demonstrated anti-inflammatory and analgesic properties in animals (Jung 2009). Researchers believe that low CoQ10 levels may play a role in the development of fibromyalgia symptoms because 1) CoQ10 has been found lacking within the blood cells of many fibromyalgia patients, and 2) subsequent CoQ10 supplementation (300 mg/d for 9 months) has been linked to a significant improvement in symptoms in a small preliminary trial (Cordero 2011). Other data from case reports (see Mitochondrial Dysfunction above) also suggest a role for CoQ10 in relieving fibromyalgia symptoms.
Acetyl-L-carnitine – Acetyl-L-carnitine is an acetylated version of the amino acid L-carnitine, which is a mitochondrial membrane compound that aids in the generation of metabolic energy and guards against oxidative damage (Abdul 2006). It has been suggested that fibromyalgia syndrome may be associated with metabolic alterations including a deficit of carnitine (Rossini 2007). In one double-blind, randomized, placebo-controlled trial involving 102 fibromyalgia patients, 1,000 mg (oral) and 500 mg (intramuscular injection) of acetyl-L-carnitine daily significantly improved pain and cognitive symptoms more than placebo (Rossini 2007). The treatment was well tolerated.
Omega-3 fatty acids – Omega-3 fatty acids can only be synthesized to a limited extent by the human body, but are vital for normal metabolism. Omega-3’s modulate several cellular properties and have been shown to reduce inflammation (Calder 2010). Among fibromyalgia patients, omega-3 fatty acid supplementation has been linked to significant improvements in pain severity, tender point counts, fatigue, and depression (Ozgocmen 2000). Another case report indicates that supplementation with fish oil (providing 2,400 – 7,200 mg of EPA/DHA daily) eased neuropathic pain in a small number of subjects with fibromyalgia and/or related neuropathic pain (Ko 2010). Life Extension suggests that the omega-6 to omega-3 ratio be kept at or below 4:1 for optimal health. A convenient blood test called the OmegaScore™ test measures the balance between pro-inflammatory omega-6’s and anti-inflammatory omega-3’s.
Vitamin D - Patients with fibromyalgia syndrome have impaired mobility and therefore get less exposure to sunlight. This contributes to the vitamin D deficiency frequently observed in this population (Bhatty 2010, Olama 2013). In one trial involving 100 women with fibromyalgia, 61% were found to be vitamin D deficient (blood levels of 25-hydroxyvitamin D <30 ng/mL) (Matthana 2011). Upon supplementation with vitamin D, 42 (69%) of those women reported significantly improved symptoms when their vitamin D levels reached ≥ 30 ng/mL; the improvement became more significant when their vitamin D levels exceeded 50 ng/mL. Fibromyalgia patient should have their vitamin D levels checked regularly (Matthana 2011). Life Extension suggests that a 25-hydroxyvitamin D level of 50 – 80 ng/mL should be targeted for optimal health among most aging individuals.
General Support
The following nutrients may render additional benefits by providing antioxidant protection and mitochondrial support:
Superoxide Dismutase (SOD) – SOD is an endogenous antioxidant found in decreased amounts among fibromyalgia patients (Bagis 2005). Superoxide dismutase occurs in plants and can thus be extracted from them. In one double blind trial, supplementation with 1,000 mg/day of a plant superoxide dismutase extract (GliSODin®) significantly boosted SOD activity and decreased CRP levels in athletes compared to placebo (Skarpanska-Stejnborn 2011).
Vitamins A, C, E, and the mineral Zinc – Vitamins A, C, E, and the mineral Zinc all provide antioxidant protection. In one study, fibromyalgia patients had lower blood levels of vitamins A and E, as well as increased lipid peroxidation when compared to healthy controls (Akkus 2009). Another study found that fibromyalgia patients had lower zinc and magnesium levels than healthy controls (Sendur 2008). In a survey of over 300 fibromyalgia patients, 35% reported using vitamin C (Wahner-Roedler 2005); and vitamin C combined with vitamin E has been shown to boost antioxidant activity in conditions related to oxidative stress (Karajibani 2010). All of these nutrients are available in a comprehensive multivitamin.
B-vitamins – B-vitamins are important cofactors in a variety of metabolic events. They were reported in a survey to be used by a quarter of fibromyalgia patients (Wahner-Roedler 2005). Homocysteine is a damaging metabolic by-product whose levels are kept in check by adequate B-vitamin intake. In one study, women with fibromyalgia were shown to have higher levels of homocysteine in their cerebrospinal fluid than healthy controls (Regland 1997). Other evidence indicates that a Myers’ Cocktail, which consists of an intravenous infusion of several vitamins (i.e., B-complex vitamins), may be useful in fibromyalgia (Gaby 2002; Ali 2009). Moreover, B-vitamins are essential for maintaining optimal mitochondrial function (Depeint 2006).
NADH – Nicotinamide adenine dinucleotide (NADH) is a coenzyme that supports numerous metabolic reactions critical for optimal cellular function. For example, NADH helps recycle CoQ10, thereby aiding in cellular energy production. It also possesses considerable antioxidant potential.
Supplementation with NADH has been shown to improve energy in people with chronic fatigue syndrome (Forsyth 1999). Similarly, NADH supplementation relieved sleepiness and cognitive deficits in people suffering from jet lag (Birkmayer 2002). In other trials, NADH improved cognitive function among people with Alzheimer’s disease (Demarin 2004) and relieved Parkinson’s disease symptoms (Birkmayer 1993). While NADH has yet to be studied in people with fibromyalgia, these findings are encouraging since fibromyalgia sufferers often experience fatigue and suboptimal cognition.
Disclaimer and Safety Information
This information (and any accompanying material) is not intended to replace the attention or advice of a physician or other qualified health care professional. Anyone who wishes to embark on any dietary, drug, exercise, or other lifestyle change intended to prevent or treat a specific disease or condition should first consult with and seek clearance from a physician or other qualified health care professional. Pregnant women in particular should seek the advice of a physician before using any protocol listed on this website. The protocols described on this website are for adults only, unless otherwise specified. Product labels may contain important safety information and the most recent product information provided by the product manufacturers should be carefully reviewed prior to use to verify the dose, administration, and contraindications. National, state, and local laws may vary regarding the use and application of many of the therapies discussed. The reader assumes the risk of any injuries. The authors and publishers, their affiliates and assigns are not liable for any injury and/or damage to persons arising from this protocol and expressly disclaim responsibility for any adverse effects resulting from the use of the information contained herein.
The protocols raise many issues that are subject to change as new data emerge. None of our suggested protocol regimens can guarantee health benefits. Life Extension has not performed independent verification of the data contained in the referenced materials, and expressly disclaims responsibility for any error in the literature.
Aaron LA, Burke MM, Buchwald D. Overlapping conditions among patients with chronic fatigue syndrome, fibromyalgia, and temporomandibular disorder. Arch Intern Med. 2000;160(2):221-227.
Abdul HM, Calabrese V, Calvani M, Butterfield DA. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. J Neurosci Res. 2006;84(2):398-408.
Abdullah M, et al. Mitochondrial myopathy presenting as fibromyalgia: a case report. J Med Case Reports. 2012 Feb 10;6(1):55.
Akkus S, et al. Levels of lipid peroxidation, nitric oxide, and antioxidant vitamins in plasma of patients with fibromyalgia. Cell Biochem Funct. 2009 Jun;27(4):181-5.
Albert JE, et al. S-adenosyl-L-methionine (SAMe) as an adjunct for resistant major depressive disorder: an open trial following partial or nonresponse to selective serotonin reuptake inhibitors or venlafaxine. J Clin Psychopharmacol. 2004 Dec;24(6):661-4.
Ali A, Njike VY, Northrup V, et al. Intravenous micronutrient therapy (Myers' Cocktail) for fibromyalgia: a placebo-controlled pilot study. J Altern Complement Med. 2009 Mar;15(3):247-57.
Alok R, Das SK, Agarwal GG, et al. Relationship of severity of depression, anxiety and stress with severity of fibromyalgia. Clin Exp Rheumatol. 2011 Nov-Dec;29(6 Suppl 69):S70-2. Epub 2012 Jan 3.
Altindag O, Celik H. Total antioxidant capacity and the severity of the pain in patients with fibromyalgia. Redox Rep. 2006;11(3):131-135.
Argoff CE. Pharmacologic management of chronic pain. J Am Osteopathic Assoc. 2002;102(9suppl3):521–526.
Arnold LM, Clauw DJ, McCarberg BH. Improving the recognition and diagnosis of fibromyalgia. Mayo Clin Proc. 2011;86(5):457-464.
Arnold LM, Clauw DJ. Fibromyalgia syndrome: practical strategies for improving diagnosis and patient outcomes: Am J Med. 2010 Jun;123(6):S2.
Arnold LM, Crofford L3, Mease PJ, et al. Patient perspectives on the impact of fibromyalgia. Patient Educ Couns. 2008;73(1):114-120.
Arranz LI, Canela MA, Rafecas M. Dietary aspects in fibromyalgia patients: results of a survey on food awareness, allergies, and nutritional supplementation. Rheumatol Int. 2011;22:22.
Arranz LI, Canela MA, Rafecas M. Fibromyalgia and nutrition, what do we know? Rheumatol Int. 2010;30(11):1417-1427.
Bagis S, Karabiber M, As I, et al. Is magnesium citrate treatment effective on pain, clinical parameters and functional status in patients with fibromyalgia? Rheumatol Int. 2012 Jan 22. [Epub ahead of print].
Bagis S, Tamer L, Sahin G, et al. Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder? Rheumatol Int. 2005;25(3):188-190.
Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011;16(6):4567-4598.
Becker S, Schweinhardt P. Dysfunctional neurotransmitter systems in fibromyalgia, their role in central stress circuitry and pharmacological actions on these systems. Pain Res Treat. 2012;741746:2.
Bhatty SA, Shaikh NA, Irfan M, et al. Vitamin D deficiency in fibromyalgia. J Pak Med Assoc. 2010;60(11):949-951.
Birdsall TC. 5-Hydroxytryptophan: a clinically-effective serotonin precursor. Altern Med Rev. 1998;3(4):271-280.
Birkmayer GD, Kay GG, Vurre E, et al. [Stabilized NADH (ENADA) improves jet lag-induced cognitive performance deficit]. Wien Med Wochenschr. 2002;152(17-18):450-4.
Birkmayer JG, Vrecko C, Volc D, et al. Nicotinamide adenine dinucleotide (NADH)--a new therapeutic approach to Parkinson's disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl. 1993;146:32-5.
Braz Ade S, de Paula AP, Diniz Mde F, de Almeida RN. Non-pharmacological therapy and complementary and alternative medicine in fibromyalgia. Rev Bras Reumatol. 2011;51(3):269-282.
Burgmer M, Pogatzki-Zhan E, Gaubitz M, et al. Altered brain activity during pain processing in fibromyalgia. Neuroimage. 2009 Jan 15;44(2):502-8. Epub 2008 Sep 24.
Buskila D, Press J, and Abu-shakra M. Fibromyalgia in systemic lupus erythematosus: prevalence and clinical implications. Clin Rev Allergy Immunol. 2003 Aug;25(1):25-8.
Buskila D, Sarzi-Puttini P. Biology and therapy of fibromyalgia. Genetics aspects of fibromyalgia syndrome. Arthritis Res Ther 2006; 8:218-22.
Calder PC. Omega-3 Fatty acids and inflammatory processes. Nutrients. 2010;2(3):355-374.
Carson JW, Carson KM, Jones KD, Bennett RM, Wright CL, Mist SD. A pilot randomized controlled trial of the Yoga of Awareness program in the management of fibromyalgia. Pain. 2010;151(2):530-539.
Caruso I, et al. Double-blind study of 5-hydroxytryptophan versus placebo in the treatment of primary fibromyalgia syndrome. J Int Med Res. 1990 May-Jun;18(3):201-9.
Carville SF, Arendt-Nielsen S, Bliddal H, et al. EULAR evidence-based recommendations for the management of fibromyalgia syndrome. Ann Rheum Dis. 2008;67(4):536-541.
Clauw DJ, Arnold LM, McCarberg BH. The science of fibromyalgia. Mayo Clin Proc. 2011;86(9):907-911.
Cordero MD, Alcocer-Gomez E, de Miguel M, et al. Coenzyme Q(10): a novel therapeutic approach for Fibromyalgia? case series with 5 patients. Mitochondrion. 2011;11(4):623-625.
Cordero MD, et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010b;12(1):R17.
Cordero MD, et al. Mitochondrial dysfunction in skin biopsies and blood mononuclear cells from two cases of fibromyalgia patients. Clin Biochem. 2010a Sep;43(13-14):1174-6.
Crofford LJ, Appleton BE. Complementary and alternative therapies for fibromyalgia. Curr Rheumatol Reports 2001; 3:147-56.
Cuatrecasas G, Gonzalez MJ, Alegre C, et al. High prevalence of growth hormone deficiency in severe fibromyalgia syndromes. J Clin Endocrinol Metab. 2010;95(9):4331-4337.
Cuatrecasas G. Fibromyalgic syndromes: could growth hormone therapy be beneficial? Pediatr Endocrinol Rev. 2009;4:529-533.
Dadabhoy D, Crofford LL, Spaeth M, Russell IJ, Clauw DJ. Biology and therapy of fibromyalgia. Evidence-based biomarkers for fibromyalgia syndrome. Arthritis Res Ther 2008; 10:211.
de Miquel CA, Campayo JG, Florez MT, et al. Interdisciplinary consensus document for the treatment of fibromyalgia. Actas Esp Psiquiatr. 2010;38(2):108-120.
Demarin V, Podobnik SS, Storga-Tomic D, et al. Treatment of Alzheimer's disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res. 2004;30(1):27-33.
Depeint F, et al. Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem Biol Interact. 2006 Oct 27;163(1-2):113-32. Epub 2006 May 24.
Diatchenko L, Nackley AG, Slade GD, et al. Idiopathic pain disorders--pathways of vulnerability. Pain. 2006 Aug;123(3):226-30. Epub 2006 Jun 13.
Flanigan R, et al. D-ribose aids fatigue in aging adults. J Altern Complement Med. 2010 May;16(5):529-30.
Forsyth LM, Preuss HG, MacDowell AL, et al. Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol. 1999 Feb;82(2):185-91.
Frosch OH, Yau PL, Osorio RS, Rusinek H, Storey P, Convit A. Insulin resistance among obese middle-aged is associated with decreased cerebrovascular reactivity. Neurology. 2017;89(3):249-255.
Gaby AR. Intravenous nutrient therapy: the "Myers' cocktail". Altern Med Rev. 2002 Oct;7(5):389-403.
Gardner A, Boles RG. Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Apr 29;35(3):730-43.
Gebhart B, Jorgenson JA. Benefit of ribose in a patient with fibromyalgia. Pharmacotherapy. 2004 Nov;24(11):1646-8.
Geenen R, Jacobs JW, Bijlsma JW. Evaluation and management of endocrine dysfunction in fibromyalgia. Rheum Dis Clin North Am. 2002;28(2):389-404.
Glombiewski JA, Sawyer AT, Gutermann J, Koenig K, Rief W, Hofmann SG. Psychological treatments for fibromyalgia: a meta-analysis. Pain. 2010;151(2):280-295.
Goldenberg DL, Burckhardt C, Crofford L. Management of fibromyalgia syndrome. JAMA. 2004;292(19):2388-2395.
Goldenberg DL. Fibromyalgia syndrome a decade later: what have we learned? Arch Intern Med. 1999;159(8):777-785.
Goldenberg, MD. Clinical manifestations and diagnosis of fibromyalgia in adults. In: UpToDate, Peter H Schur, MD, Paul L Romain, MD (Eds), UpToDate, Waltham, MA, 2011.
Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan DM, Peterson CM. Tests of glycemia in diabetes. Diabetes care. 2003;26 Suppl 1:S106-108.
Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002;46(5):1333-1343.
Hassett AL, Gevirtz RN. Nonpharmacologic treatment for fibromyalgia: patient education, cognitive-behavioral therapy, relaxation techniques, and complementary and alternative medicine. Rheum Dis Clin North Am 2009; 35:393.
Henningsen P, Zipfel S, Herzog W. Management of functional somatic syndromes. Lancet. 2007;369:946–55.
Holdcraft LC, Assefi N, Buchwald D. Complementary and alternative medicine in fibromyalgia and related syndromes. Best Pract Res Clin Rheumatol 2003;17:667-83.
Hussain SA, Al K, II, Jasim NA, Gorial FI. Adjuvant use of melatonin for treatment of fibromyalgia. J Pineal Res. 2011;50(3):267-271.
Jacobsen S, et al. Oral S-adenosylmethionine in primary fibromyalgia. Double-blind clinical evaluation. Scand J Rheumatol. 1991;20(4):294-302.
Jung HJ, Park EH, Lim CJ. Evaluation of anti-angiogenic, anti-inflammatory and antinociceptive activity of coenzyme Q(10) in experimental animals. J Pharm Pharmacol. 2009;61(10):1391-1395.
Kadetoff D, Lampa J, Westman M, Andersson M, Kosek E. Evidence of central inflammation in fibromyalgia - Increased cerebrospinal fluid interleukin-8 levels. J Neuroimmunol. 2012;242(1-2):33-38.
Karajibani M, et al. Effect of vitamin E and C supplements on antioxidant defense system in cardiovascular disease patients in Zahedan, southeast Iran. J Nutr Sci Vitaminol (Tokyo). 2010;56(6):436-40.
Ko GD, et al. Omega-3 fatty acids for neuropathic pain: case series. Clin J Pain. 2010 Feb;26(2):168-72.
Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26-35.
Le Goff P. Is fibromyalgia a muscle disorder? Bone Spine. 2006 May;73(3):239-42.
Leger D, Bayon V. Societal costs of insomnia. Sleep Med Rev. 2010;14(6):379-389.
Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007;37(1):31-37.
Lucas HJ, Brauch CM, Settas L, Theoharides TC. Fibromyalgia--new concepts of pathogenesis and treatment. Int J Immunopathol Pharmacol. 2006;19(1):5-10.
Luciano JV, Martinez N, Penarrubia-Maria MT, et al. Effectiveness of a psychoeducational treatment program implemented in general practice for fibromyalgia patients: a randomized controlled trial. Clin J Pain. 2011;27(5):383-391.
Mahdi AA, et al. Abnormality of circadian rhythm of serum melatonin and other biochemical parameters in fibromyalgia syndrome. Indian J Biochem Biophys. 2011 Apr;48(2):82-7.
Marcus DA, Bernstein C, Rudy TE. Fibromyalgia and headache: an epidemiological study supporting migraine as part of the fibromyalgia syndrome. Clin Rheumatol. 2005;24(6):595-601.
Matthana MH. The relation between vitamin D deficiency and fibromyalgia syndrome in women. Saudi Med J. 2011 Sep;32(9):925-9.
Mease PJ, Arnold LM, Crofford LJ, et al. Identifying the clinical domains of fibromyalgia: contributions from clinician and patient Delphi exercises. Arthritis Rheum. 2008;59(7):952-960.
Merchant RE, et al. Nutritional supplementation with Chlorella pyrenoidosa for patients with fibromyalgia syndrome: a pilot study. Phytother Res. 2000 May;14(3):167-73.
Moldofsky H. Rheumatic manifestations of sleep disorders. Curr Opin Rheumatol. 2010;22(1):59-63.
Mountz JM, Bradley LA, Modell JG, et al. Fibromyalgia in women. Abnormalities of regional cerebral blood flow in the thalamus and the caudate nucleus are associated with low pain threshold levels. Arthritis and rheumatism. 1995;38(7):926-938.
Nordqvist C. What Is Fibromyalgia? What Causes Fibromyalgia? Available at: http://www.medicalnewstoday.com/articles/147083.php Accessed 3/21/2012.
Okifuji A, Bradshaw DH, Olson C. Evaluating obesity in fibromyalgia: neuroendocrine biomarkers, symptoms, and functions. Clin Rheumatol. 2009;28(4):475-478.
Okifuji A, Donaldson GW, Barck L, Fine PG. Relationship between fibromyalgia and obesity in pain, function, mood, and sleep. J Pain. 2010;11(12):1329-1337.
Olama SM, Senna MK, Elarman MM, et al. Serum vitamin D level and bone mineral density in premenopausal Egyptian women with fibromyalgia. Rheumatol Int. 2013 Jan;33(1):185-92.
Ozgocmen S, Catal SA, Ardicoglu O, Kamanli A. Effect of omega-3 fatty acids in the management of fibromyalgia syndrome: Int J Clin Pharmacol Ther. 2000 Jul;38(7):362-3.
Pani LN, Korenda L, Meigs JB, et al. Effect of aging on A1C levels in individuals without diabetes: evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001-2004. Diabetes care. 2008;31(10):1991-1996.
Pappolla MA, Manchikanti L, Andersen CR, et al. Is insulin resistance the cause of fibromyalgia? A preliminary report. PloS one. 2019;14(5):e0216079.
Pfeiffer A, Thompson JM, Nelson A, et al. Effects of a 1.5-day multidisciplinary outpatient treatment program for fibromyalgia: a pilot study. Am J Phys Med Rehabil. 2003;82(3):186-191.
Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007 Aug;83(1):84-92.
Prados G, Miro E. Fibromyalgia and sleep: a review. Rev Neurol. 2012;54(4):227-240.
Regland B, et al. Increased concentrations of homocysteine in the cerebrospinal fluid in patients with fibromyalgia and chronic fatigue syndrome. Scand J Rheumatol. 1997;26(4):301-7.
Reiter RJ, Acuna-Castroviejio D, Tan DX. Melatonin therapy in fibromyalgia. Curr Pain Headache Rep 2007; 11:339–342.
Rico-Villademoros F, Calandre EP, Rodriguez-Lopez CM, et al. Sexual functioning in women and men with fibromyalgia. J Sex Med. 2012 Feb;9(2):542-9.
Rossini M, Di Munno O, Valentini G, et al. Double-blind, multicenter trial comparing acetyl l-carnitine with placebo in the treatment of fibromyalgia patients. Clin Exp Rheumatol. 2007;25(2):182-188.
Saber AA, Boros MJ, Mancl T, Elgamal MH, Song S, Wisadrattanapong T. The effect of laparoscopic Roux-en-Y gastric bypass on fibromyalgia. Obes Surg. 2008;18(6):652-655.
Sadreddini S, Molaeefard M, Noshad H, et al. Efficacy of Raloxifen in treatment of fibromyalgia in menopausal women. Eur J Intern Med. 2008 Jul;19(5):350-5.
Sarac AJ, Gur A. Complementary and alternative medical therapies in fibromyalgia. Curr Pharm Des. 2006;12(1):47-57.
Sarzi Puttini P, Caruso I. Primary fibromyalgia syndrome and 5-hydroxy-L-tryptophan: a 90-day open study. J Int Med Res. 1992 Apr;20(2):182-9.
Schmidt S, Grossman P, Schwarzer B, Jena S, Naumann J, Walach H. Treating fibromyalgia with mindfulness-based stress reduction: results from a 3-armed randomized controlled trial. Pain. 2011;152(2):361-369.
Schwarz MJ, et al. Evidence for an altered tryptophan metabolism in fibromyalgia. Neurobiol Dis. 2002 Dec;11(3):434-42.
Sendur OF, Tastaban E, Turan Y, Ulman C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatol Int. 2008;28(11):1117-1121.
Sendur OF, Turan Y, Tastaban E, et al. Serum antioxidants and nitric oxide levels in fibromyalgia: a controlled study. Rheumatol Int. 2009;29(6):629-633.
Sengupta K, Kolla JN, Krishnaraju AV, et al. Cellular and molecular mechanisms of anti-inflammatory effect of Aflapin: a novel Boswellia serrata extract. Mol Cell Biochem. 2011;354(1-2):189-197.
Skarpanska-Stejnborn A, et al. Effects of oral supplementation with plant superoxide dismutase extract on selected redox parameters and an inflammatory marker in a 2,000-m rowing-ergometer test. Int J Sport Nutr Exerc Metab. 2011 Apr;21(2):124-34.
Spaeth M, Rizzi M, Sarzi-Puttini P. Fibromyalgia and sleep. Best Pract Res Clin Rheumatol. 2011;25(2):227-239.
Teitelbaum JE, Johnson C, St Cyr J. The use of D-ribose in chronic fatigue syndrome and fibromyalgia: a pilot study. J Altern Complement Med. 2006;12(9):857-862.
Terhorst L, Schneider MJ, Kim KH, et al. Complementary and alternative medicine in the treatment of pain in fibromyalgia: a systematic review of randomized controlled trials. J Manipulative Physiol Ther. 2011 Sep;34(7):483-96. Epub 2011 Jun 24.
Terry R, Perry R, Ernst E. An overview of systematic reviews of complementary and alternative medicine for fibromyalgia. Clin Rheumatol. 2012;31(1):55-66.
Thompson ME and Barkhuizen A. Fibromyalgia, hepatitis C infection, and the cytokine connection. Curr Pain Headache Rep. 2003 Oct;7(5):342-7.
Tits M. [Fibromyalgia and physical therapy]. Rev Med Brux. 2011 Sep;32(4):393-7.
Traynor LM, Thiessen CN, Traynor AP. Pharmacotherapy of fibromyalgia. American Journal of Health-System Pharmacy. July 15, 2011 2011;68(14):1307-1319.
U.S. Department of Agriculture. USDA database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods. 2007. Available at: http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Articles/AICR07_ORAC.pdf
Ursini F, Naty S, Grembiale RD. Fibromyalgia and obesity: the hidden link. Rheumatol Int. 2011;31(11):1403-1408.
Wahner-Roedler DL, Elkin PL, Vincent A, et al. Use of complementary and alternative medical therapies by patients referred to a fibromyalgia treatment program at a tertiary care center. Mayo Clin Proc. 2005;80(1):55-60.
Wang C, Schmid CH, Rones R, et al. A randomized trial of tai chi for fibromyalgia. N Engl J Med. 2010;363(8):743-754.
Wolfe F, Cathey MA, and Kleinheksel SM. Fibrositis (Fibromyalgia) in rheumatoid arthritis. J Rheumatol. 1984 Dec;11(6):814-8.
Wolfe F, Clauw D, Fitzcharles MA, Goldenberg D, Katz RS, Mease P. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010;62: 600–10
Yunus MB. Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin Arthritis Rheum. 2007 Jun;36(6):339-56.